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Carbocylic 1,3-dioximes react with acyl chlorides giving systems that may, upon heating, suffer [3,3]-sig-
matropic rearrangements in high yields in only one of the oximes esters, yielding 1,3-dinitrogen-2-oxy-
gen trisubstituted carbocycles. Use of more reactive electrophiles, such as p-toluenesulfonyl chloride and
diethyl chlorophosphate, introduces the halogen at position 2, while cleaving the N–O bond of just one of
the oxime functions.

� 2010 Elsevier Ltd. All rights reserved.
1,2,3-Hetero trisubstituted carbocycles are important structural
features found in a variety of products of practical importance.
Examples are manifold and can bear the 1,2,3-trihydroxy motif, as
in the key biosynthetic precursor shikimic acid, or include other het-
eroatoms, such as nitrogen, as in the 1,2-diamino-3-hydroxy present
in the anti-flu drug Tamiflu�.1 The size of the cycle can also vary, and
the 1,2,3-trisubstituted motif can be found embedded in, for exam-
ple, 5-membered rings, part of more complex structures.2,3

We disclose in this work a method to generate precursors of
the densely functionalized system of 1,3-diamino-2-hydroxy car-
bocycles by functional desymmetrization of simple symmetrical
cyclic 1,3-dioximes 1 (Scheme 1). These are simple compounds
which can be easily generated from the corresponding 1,3-dicar-
bonyl compounds by reaction with hydroxylamine.4 In basic
media, the anionic species derived from 1, that is, 1A, 1B, and
1C, are amenable to react with electrophiles. Species 1C, in par-
ticular, is a key for the desymmetrization reaction, since it con-
tains one of the oxime functions as the tautomeric ene-
hydroxylamine, ideally suited for further transformation.5–7 For
example, cyclohexan-1,3-dioxime (1a)8 (1 equiv), when reacted
at 0 �C to rt in the presence of a base (3 equiv), such as Et3N,
DABCO or Hunig’s, and a suitable electrophile such as Cl(CO)Ph
(3 equiv), gave rise after work-up to compound 2a which pre-
sented the diagnostic olefinic proton (d 6.63) in position 2. Upon
ll rights reserved.
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further heating at 110 �C for 22 h in toluene a smooth [3,3]-sig-
matropic rearrangement afforded the tribenzoyl 3a in 75% yield
[Scheme 2(a)].9

Compound 3a now displays the 3 contiguous heteroatoms N, O
and N, and still retains one oxime function for further transforma-
Scheme 1. 1,3-Dioximes as precursors of 1,3-diamino-2-hydroxy carbocycles.
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Scheme 2. Reactions of 1,3-dioximes 1 and (a) benzoyl chloride, (b) p-toluenesulfonyl chloride, (c) diethyl chlorophosphate.

Table 1
Functional desymmetrization of 1,3-dioximes via [3,3]-sigmatropic rearrangement of their acyl derivatives

Entry 1,3-Dioxime Electrophile Temp (�C) Solvent/time (h) Productsa Yieldb (%)

1 1a PhC(O)Cl 110 Toluene/22 3a 75
2 1a CH3C(O)Cl 110 Toluene/15 3b 95
3 1b PhC(O)Cl 110 Toluene/26 3c 85
4 1b CH3C(O)Cl 110 Toluene/22 3d 92
5 1c PhC(O)Cl 110 Toluene/54 3e 60
6 1c CH3C(O)Cl 110 Toluene/42 3f 98

a All the products characterized by NMR, IR, and mass spectrometry.
b Yield refers to pure products after chromatography and/or crystallization.

Figure 1. X-ray analysis of 6b (left) and packing in the unit cell (right).
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Table 2
Functional desymmetrization of 1,3-dioximes derivatives using strong electrophiles

Entry 1,3-Dioxime Electrophile Temp (�C) Solvent/time (h) Productsa Yieldb (%)

1 1a p-CH3C6H4SO2Cl 0 to rt THF/12 6a 98
2 1a (EtO)2P(O)Cl 0 to rt THF/6.5 7a 60
3 1b p-CH3C6H4SO2Cl 0 to rt THF/12 6b 74
4 1b (EtO)2P(O)Cl 0 to rt THF/5 7b 70
5 1c p-CH3C6H4SO2Cl 0 to rt THF/12 6c 73
6 1c (EtO)2P(O)Cl 0 to rt THF/6 7c 81

a All the products characterized by NMR, IR, and mass spectrometry.
b Yield refers to pure products after chromatography and/or crystallization.
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tion. Other 1,3-dioximes, such as the substituted 1b,10 (Table 1, en-
tries 3 and 4) as well as five-membered ring oximes, such as 1c,11

(entries 5 and 6) reacted in a similar fashion.
With more reactive electrophiles, such as p-toluenesulfonyl

chloride, reaction with 1b gave instead compound 6b most proba-
bly via the intermediates 4b and 5b [Scheme 2(b)]. Introduction of
the halogen at position 2 occurs now with simultaneous cleavage
of the N–O bond of one the oximes derivatives.

The X-ray structure of 6b, shown in the Figure 1, confirms the
structure attributed and reveals an interesting crystal packing with
strong interactions among the aromatic rings (p–p) as well as in be-
tween the sulfonyl group of one molecule and the amino group of an-
other, leading to a ladder-type structure.12 Other similar results 7a–
c, obtained with ClP(O)(OEt)2, are collected in Table 2 (entries 2, 4
and 6) [cf. Scheme 2(c)]. In conclusion the yields of the compounds
obtained range from good to excellent and the ease of the reaction
makes it suitable for application to a wide variety of carbocycles,
intermediates in the synthesis of more complex materials.
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